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Abstract

In this report we discuss the method of Fast Bootstrap to obtain an estimate of the

distribution of robust regression estimates. The weighted average representation of MM-

estimates has been very crucial to the formulation of our problem. This method is compu-

tationally less costly as for each bootstrap sample we do not run non-convex optimization

algorithm. Rather, we only solve a system of linear equations. Robustness is achieved

by using weights as a decreasing function of absolute value of the residuals. The break-

down point of the quantile estimates from this method is higher than classical bootstrap

estimates. We illustrate the method using a simulation study and also by performing data

analysis in two different data sets.
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1 INTRODUCTION

1 Introduction

Bootstrap (Efron (1979)) is a popular approach to estimate the sampling distribution and the

standard error of the robust estimates. The standard error can also be estimated using their

asymptotic variances. However, only central normal models are considered while studying

the asymptotic behavior of these estimates. But Normality need not hold true specially in

those scenarios when robust estimation is recommended. When the distribution of errors is

symmetric, the estimates of the regression coefficients and those of the scale of the errors are

asymptotically independently distributed. Since the outliers need not be balanced in both sides

of the regression line, many data set with outliers fails to satisfy the symmetry condition of

errors. On the other hand, relaxing this condition may lead to difficult asymptotic calculation.

We will focus on MM-estimators (Yohai (1987)) which is calculated with an initial S-estimate

(Rousseeuw and Yohai (1984)). Using this method it is possible to have robust estimates.

Usual bootstrap may lead to the following problems,

• Numerical Instability: When there is outliers in the data set, bootstrap samples can have

higher proportion of outliers than that in the original sample. Then bootstrap distribution

will be a poor estimator of the distribution of the regression parameter estimates.

• Computational Cost: For high-dimensional problem, running a non-convex optimiza-

tion algorithm for each bootstrap sample can be computationally expensive.

• Recalculating residual scale estimates: A large amount of computational cost is in-

volved in recalculating robust scale estimates for each bootstrap sample. But if we do

not calculate the scale estimates, the resulting distribution may not converge to a desired

asymptotic distribution.

Hence, our basic idea is to use ”Fast Bootstrap” which uses a reweighted representation of the

estimates. this method is computationally simple and it is able to provide robust estimates.

The rest of the paper is organized as foloows: In Section (2) we discuss the structure of the

model and also briefly discuss the method of MM-estimation. In Section (3) the Fast Bootstrap

methodology has been described in details. Section (4) gives us the asymptotic result for Fast
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2 DEFINITION AND NOTATION

Bootstrap and Section (5) gives an idea of the robustness of Fast Bootstrap. Later in Section

(6) we perform simulation to validate the method, also we perform real data analysis in Section

(7). Finally, we conclude in Section (8).

2 Definition and Notation

Let us consider the regression setup with random explanatory variables.

Suppose that (y1,z
′
1)

′,(y2,z
′
2)

′, . . .(yn,z
′
n)

′ are n random vectors which are independent to each

other, also they follow the common distribution function H. To include the intercept term we

consider, xi = (1,z′i)
′ ∈ Rp.. Linear regression model is given by,

yi = x′iβ0 +σ0εi, i = 1,2, ...,n (1)

Assume that, yi and zi are independently distributed for all i. Here yi ∼F0,zi ∼G0,(yi,z′i)
′∼H0.

Also, suppose that the distribution function F0 is specified and it is symmetric.

For considering the occurrence of outliers and other deviations from the classical model, we

suppose that the real distribution of the data is H, which belongs to the contamination neigh-

borhood,

Hε = {H = (1− ε)H0 + εH∗} (2)

,where H∗ is an arbitrary and unspecified function and 0 ≤ ε < 1/2.

For estimating the model parameter we consider MM-estimation. This method is based on two

loss functions ρ0 and ρ1, say. Here ρ0 determines the breakdown point whereas, ρ1 determines

the efficiency of the estimates. If β̂n is the MM-estimate of β , then it satifies the following

equations,

1
n

n

∑
i=1

ρ1

(
yi − x′iβ̂n

σ̂n

)
xi = 0 (3)
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3 FAST BOOTSTRAP

, where σ̂n is scale S-estimate (Rousseeuw and Yohai (1984)). σ̂n minimizes the following

equation,

1
n

n

∑
i=1

ρ0

(
yi − x′iβ̂n

σ̂n(β )

)
= b (4)

Yohai (1987) has studied the asymptotic properties of the MM-estimate under H = H0. But this

assumption of central parametric model does not hold while using highly robust MM-estimates.

In the next section we will introduce Fast Bootstrap.

3 Fast Bootstrap

By solving equation (3) we obtain the MM-regression estimate of β0 as β̂n. Now, our goal

is to estimate the sampling distribution of β̂n. For this purpose a computer-intensive method

will be used to generate a large number of recalculated β̂ ∗
n based on the plug-in approach

used in bootstrap as introduced by Efron (1979). The Empirical Distribution function of the

recalculated statistics will be used to estimate the sampling distribution of β̂n.

Let us suppose that β̃n is the S-regression estimate of β0. Let us define the residuals for each

par (yi,x′i)
′ corresponding to β̂n and β̃n.

ri = yi − β̂
′
nxi

r̃i = yi − β̃
′
nxi i = 1, . . . ,n

Let us now define the following weights,

wi =
ρ ′

1(ri/σ̂n)

ri

vi =
σ̂n

nb
ρ(r̃i/σ̂n)

r̃i
, i = 1, . . .n (5)
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3 FAST BOOTSTRAP

Based on the weights in (5) β̂n and ˆsigman can be represented as weighted average form as

follows,

β̂n =

[ n

∑
i=1

wixix′i

]−1 n

∑
i=1

wixiyi

σ̂n =
n

∑
i=1

vi(yi − β̃
′
nxi) (6)

Suppose that, {(y∗i ,x∗
′

i )
′, i = 1, . . . ,n} be a bootstrap sample from the observation. Based on the

bootstrap samples we define the following forms of residuals,

r∗i = y∗i − β̂
′
nx∗i

r̃∗i = y∗i − β̃
′
nx∗i , i = 1, . . . ,n

Using the above residuals new weights can be defined as,

w∗
i =

ρ ′
1(r

∗
i /σ̂n)

r∗i

v∗i =
σ̂n

nb
ρ(r̃∗i /σ̂n)

r̃∗i
, i = 1, . . .n (7)

Using the weights as defined in (7) the recalculated parameter estimates are given by,

β̂
∗
n =

[ n

∑
i=1

w∗
i x∗i x∗

′
i

]−1 n

∑
i=1

w∗
i x∗i y∗i

σ̂
∗
n =

n

∑
i=1

v∗i (y
∗
i − β̃

′
nx∗i ) (8)

Note that, the estimates β̂n and σ̂n used in the calculating weights w∗
i and v∗i are kept fixed. So

β̂ ∗
n amd σ∗

n may not reflect the actual variability of the random vector (β̂ ′
n, σ̂n)

′. For this reason
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3 FAST BOOTSTRAP

a linear correction has been imposed on the recalculated β̂ ∗
n and ˆsigma∗n. Let,

Mn = σ̂n

[ n

∑
i=1

ρ
′′
1 (ri/σ̂n,xi)xix′i

]−1 n

∑
i=1

wixix′i

dn = a−1
n

[ n

∑
i=1

ρ
′′
1 (ri/σ̂n,xi)xix′i

]−1 n

∑
i=1

ρ
′′
1 (ri/σ̂n,xi)rixi

an =
1

nb

n

∑
i=1

r̃i

σ̂n
ρ
′
0(r̃i/σ̂n)

The the recalculated β̂n −β for Fast Bootstrap is given by,

β̂
R∗
n − β̂n = Mn(β̂

∗
n − β̂n)+dn(σ̂

∗
n − σ̂n) (9)

Let us now discuss, the reason behind taking the above form of β̂ R∗
n − β̂n as our final estimate.

note that, β̂n, σ̂n, β̃n satisfiy the following equations,

1
n

n

∑
i=1

ρ
′
1

(
ri(β̂n)

σ̂n

)
xi = 0

1
n

n

∑
i=1

ρ0

(
ri(β̃n)

σ̂n

)
= b

1
n

n

∑
i=1

ρ
′
0

(
ri(β̃n)

σ̂n

)
xi = 0

It can be easily shown that the estimates can be expressed as follows:

β̂n = An(β̂n, σ̂n)
−1 vn(β̂n, σ̂n)

σ̂n = σ̂nun(β̃n, σ̃n) (10)

β̃n = Bn(β̃n, σ̂n)
−1 wn(β̃n, σ̂n)
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3 FAST BOOTSTRAP

where,

An(β1,σ) =
1
n

n

∑
i=1

ρ ′
1(ri/σ)

ri
xix′i

vn(β1,σ) =
1
n

n

∑
i=1

ρ ′
1(ri/σ)

ri
yixi

un(β2,σ) =
n

∑
i=1

ρ0(r̃i/σ)

nbr̃i
r̃i

Bn(β2,σ) =
1
n

n

∑
i=1

ρ ′
0(r̃i/σ)

r̃i
xix′i

wn(β2,σ) =
1
n

n

∑
i=1

ρ ′
0(r̃i/σ)

r̃i
yixi

The set of equations (10) can be written as a fixed point of a suitably chosen function. Let,

f : R2p+1 → R2p+1 be defined for β1 ∈ Rp, β ∈ R, σ ∈ R. Then we can write,

f (β1,σ ,β2) =



An(β1,σ)−1vn(β1,σ)

σun(β2,σ)

Bn(β2,σ)−1wn(β2,σ)


Although f is dependent on n, for sake of simplicity we write,

f (β̂n, σ̂n, β̃n) = (β̂n, σ̂n, β̃n)
′

Since ρ1,ρ0 are differentiable, using Taylor Series expansion of f about limiting values of the

estimates i.e. about (β ,σ , β̃ ) we get,


β̂n

σ̂n

β̃n

= f (β ,σ , β̃ )+∇ f (β ,σ , β̃ )


β̂n −β

σ̂n −σ

β̃n − β̃

+Rn (11)
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3 FAST BOOTSTRAP

Here Rn is the remainder term and ∇ f (β ,σ , β̃ ) is the matrix of first order partial derivative.

Since it is possible to show that ||Rn||= op(1) equation (11) can be written as,


β̂n

σ̂n

β̃n

= f (β ,σ , β̃ )+∇ f (β ,σ , β̃ )


β̂n −β

σ̂n −σ

β̃n − β̃

+op(1)

If we define θn = (β̂n, σ̂n, β̃n)
′ and θ = (β̂ , σ̂ , β̃ )′, equation (11) becomes,

√
n(θn −θ) = (I−∇ f (θ))−1√n( f (θ)−θ)+op(1) (12)

Under certain conditions it can be shown that,
√

n(θ̂ ∗
n − θ̂n)∼

√
n(θ̂n−θ) and

√
n( f (hatθn)−

θ̂n)∼
√

n( f ∗(θ)−θ). Again, if we approximate (I−∇ f (θ))−1 by (I−∇ f (θ̂n))
−1, we get,

√
n(θ̂ ∗

n − θ̂n)∼ (I−∇ f (θ̂n))
−1√n( f ∗(θ̂n)− θ̂n)

Using the above form we define the corrected θ̂ ∗
n as,

θ̂
R∗
n = θ̂n+∼ (I−∇ f (θ̂n))

−1( f ∗(θ̂n)− θ̂n)

From here the expression (9) arises.

According to Theorem 4.3 of Salibian-Barrera (2000), the asymptotic behavior of β̂n depends

on σ̂n. Hence it is important to consider scale estimate σ̂n to estimate the distribution of β̂n.

Now consider the following remarks which will give an insight regarding the fastness and

robustness of the method.

Remark 1. For each bootstrap sample we do not solve equations (3) and (4) every time, rather

we recalculate the quantities mentioned in (8). Also, the correction factors Mn,dn,an which

arise from the linear systems and the weighted averages are calculated only once. Hence, it

reduces the load of computation.

Remark 2. ρ ′
1 is a redescending score function, i.e. ρ ′

1(r) = 0, for | r |≥ c > 0. Since, β̂n

is estimated using ρ ′
1, smaller weights are applied to the outlying observations. Hence, the

9



4 ASYMPTOTIC PROPERTIES OF FAST BOOTSTRAP

method gives stable estimates even in the presence of outliers. The extreme outliers (with cor-

responding residuals | ri |> cσ̂n) receives zero weight and so they do not affect the recalculated

coefficients.The recalculated σ̂∗
n are not affected by the outliers since the weights vi are de-

creasing in absolute values of the residuals.

4 Asymptotic Properties of Fast Bootstrap

For the above proposed fast bootstrap estimator, our focus now is to derive its asymptotic

distribution and to show that it is the same as that of MM-regression estimator.

We assume the following regularity conditions on ρ0 and ρ1”.

R 1. Both ρ0 and ρ1 are even functions i.e. ∀u ∈ R, ρ0(−u) = ρ0(u) and ρ1(u) = ρ1(−u);

R 2. ρ0(0) = 0 = ρ1(0);

R 3. ρ0 and ρ1 are continuously differentiable functions;

R 4. supx ρ0(x) = supx ρ1(x) = 1;

R 5. If ρ0(u)< 1 and 0 ≤ v < u, then ρ0(v)< ρ0(u). Same condition holds for ρ1.

Beaton and Tukey (1974) proposed a family of functions which satisfy R (1)- (R 5), denoted

by ρ , where,

ρ(u) =


3
( u

d

)2 −3
( u

d

)4
+
( u

d

)
if |u| ≤ d

1 if |u|> d
where d > 0 is a fixed constant (13)

We now state the main theorem o the convergence of Fast bootstrap distribution.

Theorem 1. Let ρ1 and ρ2 be real functions satisfying (R1)-(R5). We further assume that the

have continuous third derivatives. Let β̂n be the MM-regression estimator, σ̂n the S-scale and

β̃n the associated S-regression estimator. We assume that they are consistent, i.e., β̂n
p−→ β ,

10



5 ROBUSTNESS OF FAST BOOTSTRAP

σ̂n
p−→ σ and β̃n

p−→ β̃ , where β , σ and β̃ are the solutions of the following equations:

E[ρ ′
1((Y −X ′

β )/σ)] = 0

E[ρ0((Y −X ′
β̃ )/σ)] = b

E[ρ ′
0((Y −X ′

β̃ )/σ)] = 0

Now if the following conditions hold,

1. The following matrices exist and are finite:

E[ρ ′
1(r)/rXX ′]−1, E[ρ ′

0(r)/rXX ′], E[ρ ′
1(r)XX ′] E[ρ ′

1(r)rXX ′]

E[ρ ′′
0 (r)XX ′] E[ρ ′′

1 (r)XX ′], E[ρ ′′
0 (r)rX ], E[ρ ′′

1 (r)rX ]

2. E[ρ ′′
0 (r)r] ̸= 0 and finite

3. ρ ′
1(u)/u, ρ ′

1(u)/u, (ρ ′
0(u)−ρ ′′

0 (u)u)/u2 and (ρ ′
1(u)−ρ ′′

1 (u)u)/u2 are continuous

then almost all sample sequences
√

n(β̂ R∗
n − β̂n) converges weakly, as n goes to ∞, to the same

limit distribution as
√

n(β̂n −β ).

It is interesting to note that the Tukey’s family (13) satisfies Assumption 3 stated above.

We made another assumption on the consistency of σ̂n, β̃n and β̂n. Salibian-Barrera (2000)

found regularity conditions that suffice to prove the consistency and asymptotic distribution of

these estimates for any F ∈ Hε (2).

5 Robustness of Fast Bootstrap

Now that we have established the consistency of the fast bootstrap estimator, we now focus on

their robustness properties.

For t ∈ (0,1), let qt be the tth upper quantile of a statistic θ̂n, then qt satisfies the following

equation:

P[θ̂n > qt ] = t

11



5 ROBUSTNESS OF FAST BOOTSTRAP

To discuss about the robustness of any estimator, a classical metric to judge said property is

using the breakdown point.

Definition 1 (Breakdown Point (Singh (1998))). The upper breakdown point of a quantile

estimate q̂t is the minimum proportion of asymmetric contamination than can drive it over any

finite bound.

We discuss two scenarios where quantile estimates based on fast bootstrap can breakdown.

• When the proportion of outliers in the original data is larger than the breakdown point of

the estimate. The estimates can be unreliable along with any conclusion which could be

derived from them.

• Let τ∗ be the expected proportion of bootstrap samples that contain more outliers than

the breakdown point of the estimate which implies that we expect τ∗ × 100% of the

recalculated β̂ ∗
n ’s to be unreliable. The estimate q̂t can be affected severely if τ∗ > t.

As used in classical theory, breakdown point is related to the geometrical characteristics of

the data. In similar way, these characteristics affect the breakdown point of the fast bootstrap

quantile estimates. We define the concept of General position (Rousseeuw and Leroy (1987))

to progress with our discussion.

Definition 2 (General Position). We say k points in Rp are in general position if no subset of

size p+ 1 of them determines an affine subspace of dimension p. In other words, for every

subset xi1, . . . ,xip+1, 1 ≤ i j ≤ k, i j ̸= il if j ̸= l, there are no vector v0 ∈ Rp\{0} and scalar

α ∈ R such that,

x′i j
v0 = α, for j = 1, . . . , p+1

If explanatory variables are in general position, then the condition ensures that the estimates

we are dealing with are bounded.

We now state the main result of this theorem which establishes the breakdown point of the

quantile estimators based on fast bootstrap.

Theorem 2 (Breakdown point of fast bootstrap quantiles for regression model). Let (y1,x′1)
′, . . . ,

(yn,x′n)
′ ∈Rp+1 be the random sample following linear model (1). Assume that the explanatory

12



5 ROBUSTNESS OF FAST BOOTSTRAP

variables x1, . . . ,xn in Rp are in general position (See Def. 2). Let β̂n be an MM-regression

estimate and let ε∗ be its breakdown point. Then the breakdown point of the tth fast bootstrap

quantile estimate of the regression parameters β j, j = 1, . . . , p is given by min(ε∗,εR, where εR

satisfies

εR = inf{δ ∈ [0,1] : P[Binomial(n,1−δ )< p]≥ t} (14)

the above equation is equivalent to:

εR = inf{δ ∈ [0,1] : P[Binomial(n,δ )≥ n− p]≥ t} (15)

Singh (1998) obtained the following formula for the upper breakdown point of the bootstrap

estimate q̂t of qt:

εC = inf{δ ∈ [0,1] : P[Binomial(n,δ )≥ [ε∗n]]≥ t} (16)

where [x] denotes the smallest integer larger than or equal to x and ε∗ is the breakdown point

of the estimate being bootstrapped. Since [ε∗n]≤ [n/2]< n−1 for n > 3, we see from the two

above equations that εC < εR.

An intuitive discussion on the above theorem can be made as follows: It can be shown

that given a bootstrap sample of size n, if without loss of generality, the first k observations

are “good” and the remaining n− k are arbitrary outliers, we get bounded estimate β̂ ∗, the

value of which can only be modified by a finite amount (amount being depending on the k

first observations, and not the others). Then, considering all possible bootstrap samples which

contain at least p points that are not outliers, we find a bound that depends only on the original

dataset. To drive the tth fast bootstrap quantile estimate above any bound, we need to have

atleast t% of the bootstrap samples containing less than p “good” points. That proportion, say

δ of outliers in the original sample should then satisfy the condition that P[Binomial(n,1−δ )<

p]≥ t.

In other words, εR is that proportion of the original sample which needs to be contaminated

13



6 SIMULATION STUDY

by asymmetric values to blow up the fast bootstrap quantile estimate over any finite bound.

6 Simulation Study

After establishing the theoretical properties,in this section we show that the Fast Bootstrap

actually works in practical scenario by using it on simulated data.Here we report the coverage

and length of the confidence interval of the parameters β in the true model.We will also report

the computation time to show the fastness of this method.

We considered sample sizes n=30 and 100 with p=2 explanatory variables.The independent

variables included an intercept x1:1 and x2 ∼ N(0,1).The errors were generated as follows:

Algorithm 1 Generation of errors

START

1. Generate random number r from U(0,1)

2. If r ≤ 1− ε generate ei from N(0,1) else go to step 3

3. Generate ei from U(20,25)

4. Repeat step 1,2 and 3 until n errors are generated

STOP

We used ε = 0.00 and 0.20 and here we report the results of all the 4 cases. We used β0 = 5

and β1 = 5 and then generated Y = β0 +β1X1 + ε . We have generated 1000 datasets from the

above distribution and built 99% confidence intervals for the parameters.

We used MM-regression estimates obtained with ψ = ρ4.685 in Tukey’s family. The S-

scale was obtained with ρ1.54764 also in Tukey’s family. This choice yields estimates with

simultaneous 50% breakdown point and 95% efficiency when the data are normally distributed.

From Figure 1 we can see that Fast and robust bootstrap gives better coverage and shorter

length whenever there is contamination in the data.The reason for this seems to be that the

empirical asymptotic variance formula is numerically unstable (especially for contaminated

datasets). In case of no contamination it works as well as the OLS regression bootstrap but it

still takes less time than classical bootstrap as shown in the Figure 2.

14



6 SIMULATION STUDY

Figure 1: Coverage and length of 99% confidence interval obtained by Fast and robust bootstrap

Figure 2: Comparison of computational cost

In the beginning we stated that how classical bootstrap deals with problem of numerical

stability and computational cost. As Figure (1) shows how the Fast and Robust Bootstrap gives

15



7 DATA ANALYSIS

numerically more stable estimates similarly Figure (2) clearly shows how the computational

cost of Fast and Robust Bootstrap is much less when compared to Classical Bootstrap

7 Data Analysis

We now illustrate the stability of the inference based on the fast bootstrap on a simple and a

multiple linear regression analysis. In both cases we compare the inference obtained using the

bootstrap and the fast bootstrap. These examples simultaneously illustrate the serious effect of

the outliers on the inference derived from the bootstrap and the robustness of the fast bootstrap.

7.1 Belgian International phone calls data set

This data consist of the number of international phone calls (in tens of millions) originated

in Belgium between 1950 and 1973. From 1964 to 1969 the observations were mistakenly

recorded.Instead of the number of calls, their total duration in minutes was registered.The linear

regression model used to fit the data is

Calls = α0 +β0Year+ ε,

where α0 and β0 are the parameters of interest and the errors are assumed to be independent

and identically distributed with mean 0 and unknown but constant variance.Figure (3) displays

the data with the robust and least squares fits. To obtain confidence intervals for the regression

parameters β , we use the bootstrap and fast bootstrap methods.

We performed 10,000 bootstrap recalculations. Scatterplots of β̂ R∗
n − β̂n for the fast boot-

strap and of β̂ ∗
u − β̂n for the bootstrap are presented in Figure (4A). We clearly see that the

fast bootstrap estimates are more stable. This is also reflected in the length of the confidence

intervals in Figure (4B) where the length of Fast and robust bootstrap confidence interval is

extremely low in comparison to that of classical bootstrap.

16



7.1 Belgian International phone calls data set 7 DATA ANALYSIS

Figure 3: OLS and robust regression fits on the Belgian international phone calls

Coefficient Fast Bootstrap Classical Bootstrap

Intercept (.52, 2.53) (-438.71, -1.47)

Slope (.99, 1.20) (409.16, 11.89)

[A] [B]

Figure 4
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[A] [B]

Figure 5

7.2 Verbal Test Score Data

For drawing inferences drawing from a multiple regression analysis we chose this data set.

These data contain observations drawn from 20 schools in the United States. They were first

studied by Coleman (1966).The data consist of verbal mean test scores for sixth-graders drawn

from 20 schools in the Mid-Atlantic and New England states. The explanatory variables are:

staff salaries per pupil (Staff Salary), percent age of white-collar fathers (White Collar), socioe-

conomic status composite deviation (Soc. Status), mean teacher’s verbal test score (Teacher

Score) and mean mother’s educational level (Mother Ed.). We fit a multiple linear regression

model to these data to find which variables have a significant effect on the mean verbal test

score of the students. We used the classical least squares fit and a 50% breakdown point and

95% efficient MM regression estimate with score functions in Tukey’s family . Figure (5) con-

tains the plot of the residuals obtained with the least squares and MM-regression estimates.

From this plot it is clear that these data contain outliers and that the least squares fit is not

appropriate. To determine which coefficients are significantly different from 0, we built 95%

confidence intervals using both bootstrap and fast bootstrap methods to estimate the distribution

of the robust MM-regression estimator. We used 5000 bootstrap samples to estimate the appro-

priate quantiles of the marginal distributions.The resulting confidence intervals are displayed

in table given below.
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Coefficient Fast Bootstrap Classical Bootstrap

Intercept (13.8, 47.2) (-16.08, 56.59)

Staff salary (-3.15, -0.17) (-3.74, 0.374)

White collar (0.034, 0.133) (-0.065, 0.147)

Soc. status (0.554, 0.780) (0.316, 0.793)

Teacher Score (0.605, 1.729) (0.184, 1.931)

Mother Ed. (-6.43, -1.84) (-7.30, 3.92)

The only significant coefficients using the bootstrap (at the 5% level) are those of Soc. Status

and Teacher Score. The confidence intervals constructed with the fast bootstrap indicate that

all coefficients are significant at this level. Also note that the lengths of confidence intervals by

classical bootstrap is longer than that of Fast and Robust Bootstrap.

To explore the shape of the estimates of the marginal distributions obtained with each method,

we used QQ-plots of the marginal bootstrap distributions. Figure (6) contains these plots for

two marginal distributions, the other marginal distributions being very similar. As expected,

the marginal distributions of the bootstrap have heavier tails than those of the fast bootstrap,

resulting in unduly long confidence intervals.
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Figure 6: QQ-plots of the bootstrap and fast bootstrap marginal distributions for the verbal test
score data

8 Concluding Remark

We have discussed the concept of fast bootstrap, which we use as a tool in estimation of distri-

bution of robust regression estimates. We have discussed its asymptotic properties and robust-

ness. It is clear that this process yields estimates faster than normal Bootstrap estimates and are

much robust than the same. We have simulated data and implemented the technique to validate

the concepts. We have found the it yields good coverages for the estimates confidence intervals

even when used on data with significant contamination. Finally we have used the technique

on two real life data-sets and obtained positive results as far as theoretical and computational

properties are concerned.
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Supplementary Materials

Interested readers may visit the following link to access the codes used for simulation tasks and

the application on real data-sets:

https://github.com/manas16may/MTH-516A-Non-Parametric-inference
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